ACTIVATION AND TRANSFER OF OXYGEN XV

EVIDENCE FOR THE TRANSIENT OPENING OF THE PYRAZINE RING IN N¹- AND N⁵- ALKYLFLAVIN MODELS. 4^{A} - to 10^{A} - ADDUCT ISOMERIZATION AND PYRAZINE- AND PYRIMIDINE- RING CONTRACTIONS.

H.I.X. Mager

Biochemical and Biophysical Laboratory of the University of Technology, 67 Julianalaan, 2628 BC, DELFT, The Netherlands.

Summary: The pyrazine ring opening is proven by rearrangements leading to benzimidazoles $\frac{4}{4}$, <u>13</u> and <u>14</u>. A 4^{a} - to 10^{a} -adduct isomerization (<u>6</u> \rightarrow <u>7</u>) and the intermediacy of a carbonyl oxide <u>15</u> are indicated by pyrimidine ring contractions into <u>8</u> and <u>9</u>, respectively.

In the preceeding paper¹ it was shown that the 10^a-hydroxy pseudobase <u>1</u> is in equilibrium with a blue intermediate for which structure <u>2</u> has been proposed.^{2,3} In order to find evidence for the transient opening of the pyrazine ring, efforts had to be made to effect some kind of trapping reaction. An intramolecular attack at the original C^{4a} might be pictured to be such a trapping reaction resulting in a benzimidazole <u>4</u> (Scheme 1).

Organic solutions of the blue intermediate <u>2</u> undergo a spontaneous bleaching to give the C^{4a}-spirohydantoin as the main product. However, the presence of traces of a benzimidazole derivative could indeed be demonstrated by extracting the bleached solutions with dilute hydrochloric acid. The acidic extracts showed a characteristic spectrum with absorption maxima at 262, 268 and 275 nm, identical with the spectrum of 1-methylbenzimidazole <u>4</u>.

Attempts were made to increase the yield of the benzimidazole by increasing the electrophilicity of the C^{4a} bridgehead carbon of the flavinium ring system by protonation and N⁵alkylation. Although the intramolecular rearrangement has to compete with the regeneration of the alloxazinium cation, a stimulation of the first by protonation has appeared to be undeniable. The effect of a N⁵-alkyl group even proved to be dramatic.

Starting from the 5-ethyl-3-methyllumiflavinium cation 5 (Scheme 2), rather stable 4^{a} -adducts <u>6</u> (R= H; OH; Me) are obtained as the results of competitive, intermolecular nucleophilic attacks at c^{4a} . Nevertheless, an irreversible ring contraction into a benzimidazole <u>12</u> may be expected to become a predominant reaction, since 4^{a} -adducts are in equilibrium with the cation <u>5</u>.

The 4^{a} -hydroxy pseudobase <u>6</u> (R= H) was of particular interest. Only the reconversion into the cation <u>5</u> by acidification seems to have been well studied.⁴ In attempts to recrystallize the pseudobase from both aqueous and organic solvents, we observed the occurrence of some transformations. The main product isolated in a yield of 60% from aqueous solutions was analyzed for a new isomer of the pseudobase, the C^{4a}-spirohydantoin <u>8</u>, which was quite unexpected. By this remarkable transformation it has been substanciated for the first time that even the less electrophilic 10^{a} -position of N⁵-alkylflavinium cations can be preferably attacked by nucleo-

Fig. UV spectra of 10^{-5} M solutions in 96% EtoH of: <u>6</u> (R=H, <u> λ_{max} </u>, nm (ϵ): 222 (36,000), 286 (6900), 308 (7200), 355 (8800)); <u>8</u> (.... λ_{max} , cf. example 1); <u>9</u> (----- λ_{max} , cf. example 2); <u>14</u> (----- λ_{max} , nm (ϵ): 279 (9100), 287 (8900)).

philes to give a 10^{a} -adduct <u>7</u>. It illustrates, that in spite of a stablizing N²-substituent, a 4^{a} -adduct can act as a storage isomer of a transient 10^{a} -adduct.

Example 1: A mixture of <u>6</u> (R= H; 0.50 g), H₂O (10 ml) and MeCN (5 ml) was refluxed until the blue colouration had changed into a yellow one (2.5-4 h). The starting compound was then completely converted according to TLC (CHC1₃-AcOEt, 4:1) on silicagel. The colourless crystalline product <u>8</u> was filtered off and recrystallized from aqueous ethanol, yield 0.30 g (60%) m.p. 236-236.5^o ($C_{16}H_{20}N_{4}O_{3}$ (316.37) Calcd: C, 60.74; H, 6.37; N, 17.71 Found: C, 60.9; H, 6.4; N, 17.7). Mass spectrum, m/e (%): 316 (M⁺, 100); 287 (43); 258 (6); 230 (36); 203 (52); 175 (31). PMR (CDC1₃): δ = 1.22 (3, t, J= 7 Hz, C-Me); 2.23 (6, s, C-Me); 3.08 (3, s, N-Me, overlapping -CH₂); 3.41 (3, s, N-Me); 6.03 (1, s, NH); 6.65 (1, s, Ar-H); 6.82 (1, s, Ar-H). IR (KBr), cm⁻¹: 3250; 1783; 1733; 1640. UV (96% EtOH), λ_{max} (ϵ): 227.5 nm (33,500); 307.5 nm (6100).

From the mother liquor, the C^{10a} -spirohydantoin <u>9</u> was obtained in low yield (5%), representing the result of a ring contraction of the 4^{a} -hydroxy pseudobase. The yields of the

spirohydantoins varied in dependence on the nature of the medium and the experimental conditions. (Spirohydantoin <u>9</u> was more readily obtained by the spontaneous decomposition of the 4^a-hydroperoxydihydroflavin, cf. example 2 and Scheme 4).

Most rewarding were the attempts to find a close material balance. Besides the two spirohydantoins <u>8</u> and <u>9</u>, two crystalline organic salts <u>13</u> and <u>14</u> (Scheme 3) were obtained, both from the 1-ethyl-3-methylbenzimidazolinium cation. Displacements of the organic anions by $\text{Clo}_{l_1}^-$ gave N-methyloxaluric acid and N-methylparabanic acid. The salts <u>13</u> and <u>14</u> were formed as the final products in aqueous and anhydrous media, respectively.

The reactions leading to the C^{4a} -spirohydantoin <u>8</u> and to the benzimidazolinium salts are <u>competitive</u> processes. This was demonstrated on varying the water content of the medium. The benzimidazolinium salt <u>13</u> was obtained in a yield of 15% from the mother liquor in example 1. On diminishing the water content of the reaction mixture, the yield of the spirohydantoin <u>8</u> decreased to a few percents, while the yield of <u>13</u> increased to 60%. From anhydrous solutions, e.g. acetonitrile, the benzimidazolinium salt <u>14</u> was isolated in a yield of 60%. The UV spectra of the $C_{16}H_{20}N_4O_3$ -isomers <u>8</u>, <u>9</u> and <u>14</u> formed from <u>6</u> (R= H) by the various ring contractions are given in the Figure.

The intramolecular rearrangement into a benzimidazolinium cation does prove the opening of the pyrazine ring, but it does not provide unambigous evidence for either a 10,10^a- or a 4^a,5ring cleavage (Scheme 3). In order to answer this important question, studies on the formation of benzimidazoles from ¹³C-enriched flavin models are in progress.

During the transformations mentioned in Schemes 2 and 3 a blue intermediate was produced, which could be extracted from aqueous reaction mixtures. The absorption maxima were dependent on the nature of the solvent giving values of 502 and 580 nm (H_20), 608 and 656 nm (benzene) and 603 and 641 nm (CHCl₃), identical with the spectra of the neutral 5-ethyl-3-methyl-lumiflavin radical.

A N^5 -dealkylated dihydroflavin formed by solvolysis of 5 may act as a reducing agent for a 5-ethyl-3-methyllumiflavinium cation. However, in the preparative experiments on the ring transformations shown in Scheme 2, only small amounts of 3-methyllumiflavin were found. This implies that solvolysis of 5 had not been important.

The question whether a 4^{a} -hydroperoxy-dihydroflavin can also functionate as a storage compound for a 10^{a} -hydroperoxy isomer is being studied. However, in the N⁵-alkylflavin model series, the 4^{a} -hydroperoxide <u>6</u> (R= OH) is too labile to undergo a considerable transformation into a benzimidazolinium salt. Suspensions or solutions of the hydroperoxide in aqueous or organic media spontaneously gave rise to an evolution of oxygen with the formation of <u>9</u>.

Example 2: In a manometric apparatus, a suspension of <u>6</u> (R= OH; 332 mg) in H₂O (50 ml) was stirred at room temperature until 0_2 -evolution ceased. Spirohydantoin <u>9</u> was filtered off and recrystallized from aqueous ethanol, yield 0.25 g (79%) m.p. 205-205.5^o (C₁₆H₂₀N₄O₃ (316.37) Calcd: C, 60.7¹; H, 6.37; N, 17.71 Found: C, 60.5; H, 6.4; N, 17.6). Mass spectrum, m/e (%): 316 (M⁺, 100); 287 (6); 258 (11); 231 (75); 203 (60); 175 (146). PMR (CDCl₃): δ = 1.26 (3, t, J= 7 Hz, C-Me); 2.22 (6, s, C-Me); 2.80 (3, s, N-Me); 3.05 (3, s, N-Me); 4.01 (2, q, J= 7 Hz, CH₂); 6.27 (1, s, NH); 6.65 (1, s, Ar-H); 6.82 (1, s, Ar-H). IR (KBr), cm⁻¹: 3290; 1790; 1735; 1647. UV (96% EtOH), λ_{max} (ε): 225.5 nm (35,000); 305 nm (6000).

These conditions were harmless to the 4^{a} -hydroxy pseudobase as was shown by its quantitative recovery in blank experiments. (The pseudobase can be converted into <u>9</u> in boiling neutral solvents, requiring long refluxing times and giving considerably lower yields).

From these experiments it has appeared that the generation or transfer of oxygen by a non-radical decomposition of <u>6</u> (R=OH) is connected with a $4,4^{\text{a}}$ -bond cleavage, which justifies⁵ the formulation of a transient carbonyl oxide <u>15</u> (Scheme 4). A substituent at N⁵ is not expected to decrease the chance for a 4^{a} ,5-ring opening. Nevertheless, no indication has been found for the intermediacy of a carbonyl oxide type derived from such a ring cleavage.

During autoxidation of 5-ethyl-3-methyl-dihydrolumiflavin, the pathway given in Scheme ¹ is easily displaced by one-electron reductions of the ¹/₄^a-hydroperoxy-dihydroflavin, resulting in hydroxylating radicals and the ¹/₄^a-hydroxy pseudobase as the main products.⁵

Neither the rate and the yield of the 0_2 -production nor the yield of <u>9</u> (Scheme 4) were affected by the additional presence of an aldehyde. Apparently, the chemiluminescence ⁶ shown by a 4^a -hydroperoxy-dihydroflavin and an aldehyde is a minor pathway.

Scheme 4

<u>Acknowledgement</u> I am very much indebted to Mr. T. de Beer for his experimental assistance.

REFERENCES.

- 1. H.I.X. Mager and R. Addink, Tetrahedron Letters 1979 (preceeding paper).
- 2. H.I.X. Mager, in *Flavins and Flavoproteins*, Proceedings of the Sixth International Symposium in Osaka (Japan), 1978 (T. Yamono and K. Yagi, ed.), in the press.
- 3. H.I.X. Mager, Tetrahedron Letters <u>1979</u> (part XIII in these series).
- 4. S. Ghisla, U. Hartmann, P. Hemmerich and F. Müller, Liebigs Ann. Chem. 1973, 1388-1415.
- H.I.X. Mager, in Oxidases and Related Redox Systems, Proceedings of the Third International Symposium held in Albany (U.S.A.), 1979 (T.E. King, H.S. Mason and M. Morrison, ed.), in the press.
- 6. C. Kemal and T.C. Bruice, Proc. Nat. Acad. Sci. USA 73, 995-999 (1976).

(Received in UK 17 May 1979)